Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Nutr Rev ; 82(2): 248-261, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164634

RESUMO

Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.


Assuntos
Mirtilos Azuis (Planta) , Fragaria , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Rubus , Vaccinium macrocarpon , Animais , Humanos , Frutas , Disbiose , Qualidade de Vida , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia
2.
Int J Med Sci ; 20(6): 725-736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213669

RESUMO

High serum phosphate levels in chronic kidney disease (CKD) are linked to adverse health outcomes, including cardiovascular disease, kidney disease progression, and all-cause mortality. This study is aimed to find out which microorganisms or microbial functions have a significant impact on higher calcium-phosphorus product (Ca x P) after they undergo hemodialysis (HD) treatment. Feces samples from 30 healthy controls, 15 dialysis patients with controlled Ca xP (HD), and 16 dialysis patients with higher Ca xP (HDHCP) were collected to perform in 16S amplicon sequencing. We found gut microbial composition was significantly different between hemodialysis patients and healthy controls. Three phyla including Firmicutes, Actinobacteria, and Proteobacteria were significantly enriched in hemodialysis patients. Although only one genus, Lachnospiraceae_FCS020_group, was significantly increased in higher Ca xP group, there were four metabolic pathways predicted by PICRUSt significantly increased in higher Ca xP group and associated with causing VC, including the pentose phosphate pathway, steroid biosynthesis, terpenoid backbone biosynthesis, and fatty acid elongation pathway. Characterizing dysbiosis of gut microbiome played the important role in hemodialysis patients.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Microbioma Gastrointestinal/genética , Rim , Fezes , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/microbiologia , Diálise Renal
3.
Microbiol Spectr ; 11(1): e0310122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788674

RESUMO

Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.


Assuntos
Cardiomiopatias , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Camundongos , Animais , Microbioma Gastrointestinal/genética , Disbiose/terapia , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Estudos de Casos e Controles , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/microbiologia , Interferon gama , Cardiomiopatias/terapia , Linfócitos T CD4-Positivos
4.
Microbiome ; 11(1): 3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624472

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a severe public health problem associated with a disordered gut microbiome. However, the functional alterations of microbiota and their cross talk with metabolism pathways based on disease severity remain unclear. RESULTS: We performed metagenomics and untargeted metabolomics in a cohort of 68 patients with CKD of differing severities and 20 healthy controls to characterize the complex interplay between the gut microbiome and fecal and serum metabolites during CKD progression. We identified 26 microbial species that significantly changed in patients with CKD; 18 species changed as the disease progressed, and eight species changed only in a specific CKD group. These distinct changes in gut microbiota were accompanied by functional alterations in arginine and proline, arachidonic acid, and glutathione metabolism and ubiquinone and other terpenoid-quinone biosynthesis pathways during CKD progression. Further metabolomic analyses revealed that the distributions of toxic and pro-oxidant metabolites from these four essential metabolic pathways varied in the feces and serum as CKD progressed. Furthermore, we observed a complex co-occurrence between CKD severity-related bacteria and the characterized metabolites from the four essential metabolic pathways. Notably, Ruminococcus bromii, fecal hydroquinone, and serum creatinine were identified as the main contributors to the integrated network, indicating their key roles in CKD progression. Moreover, a noninvasive model including R. bromii and fecal hydroquinone, L-cystine, and 12-keto-tetrahydro-LTB4 levels classified the CKD severity (area under the curve [AUC]: > 0.9) and had better performance than the serum creatinine level for mild CKD (AUC: 0.972 vs. 0.896). CONCLUSIONS: Perturbed CKD severity-related gut microbiota may contribute to unbalanced toxic and pro-oxidant metabolism in the gut and host, accelerating CKD progression, which may be an early diagnostic and therapeutic target for CKD. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Hidroquinonas , Creatinina , Espécies Reativas de Oxigênio , Metaboloma , Fezes/microbiologia , Metabolômica , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia
5.
Microb Pathog ; 174: 105891, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427659

RESUMO

CONTEXT: Chronic kidney disease (CKD) affects approximately 10% of the global population. The abundance of Akkermansia muciniphila (AKK) is significantly reduced in CKD patients. OBJECTIVE: This study investigated the effects of AKK bacteria on kidney damage and the renal interstitium in rats with CKD. MATERIALS AND METHODS: CKD model 5/6 nephrectomy rats were used. CKD rats were supplemented with AKK (2 × 108 cfu/0.2 mL) for 8 weeks. RESULTS: AKK administration significantly suppressed epithelial-mesenchymal transition (EMT), and high-throughput 16S rRNA pyrosequencing showed that AKK supplementation restored the disordered intestinal microecology in CKD rats. AKK also enhanced the intestinal mucosal barrier function. AKK may regulate the intestinal microecology and reduce renal interstitial fibrosis by enhancing the abundance of probiotics and reducing damage to the intestinal mucosal barrier. CONCLUSION: The results suggest that AKK administration could be a novel therapeutic strategy for treating renal fibrosis and CKD.


Assuntos
Rim , Insuficiência Renal Crônica , Ratos , Animais , RNA Ribossômico 16S/genética , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/microbiologia , Fibrose
6.
mSphere ; 7(6): e0044622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321825

RESUMO

Renal impairment associated with chronic kidney disease (CKD) causes the buildup of uremic toxins that are deleterious to patient health. Current therapies that manage toxin accumulation in CKD offer an incomplete therapeutic effect against toxins such as para-cresol (p-cresol) and p-cresyl sulfate. Probiotic therapies can exploit the wealth of microbial diversity to reduce toxin accumulation. Using in vitro culture techniques, strains of lactobacilli and bifidobacteria from a 24-strain synbiotic were investigated for their ability to remove p-cresol. Four strains of bifidobacteria internalized p-cresol from the extracellular environment. The oral supplementation of these toxin-clearing probiotics was more protective than control strains in a Drosophila melanogaster toxicity model. Bifidobacterial supplementation was also associated with higher abundance of lactobacilli in the gut microbiota of p-cresol-exposed flies. The present findings suggest that these strains might reduce p-cresol in the gut in addition to increasing the prevalence of other beneficial bacteria, such as lactobacilli, and should be tested clinically to normalize the dysbiotic gut microbiota observed in CKD patients. IMPORTANCE Chronic kidney disease (CKD) affects approximately 10% of the global population and has limited treatment options. The accumulation of gut microbiota-derived uremic toxins, such as para-cresol (p-cresol) and p-cresyl sulfate, is associated with the onset of comorbidities (i.e., atherosclerosis and cognitive disorders) in CKD. Unfortunately, dialysis, the gold standard therapy is unable to remove these toxins from the bloodstream due to their highly protein-bound nature. Some strains of Bifidobacterium have metabolic properties that may be useful in managing uremic toxicity. Using a Drosophila model, the present work highlights why dosing with certain probiotic strains may be clinically useful in CKD management.


Assuntos
Proteínas de Drosophila , Probióticos , Insuficiência Renal Crônica , Animais , Drosophila melanogaster , Toxinas Urêmicas , Probióticos/uso terapêutico , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/microbiologia , Sulfatos , Canais de Sódio
7.
Curr Nutr Rep ; 11(4): 765-779, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36138326

RESUMO

PURPOSE OF REVIEW: This narrative review aimed to summarize the current evidence on the connection between dysbiosis and vitamin K deficiency in patients with chronic kidney disease (CKD). The presence of dysbiosis (perturbations in the composition of the microbiota) has been described in several non-communicable diseases, including chronic kidney disease, and it has been hypothesized that dysbiosis may cause vitamin K deficiency. Patients with CKD present both vitamin K deficiency and gut dysbiosis; however, the relationship between gut dysbiosis and vitamin K deficiency remains to be addressed. RECENT FINDINGS: Recently, few studies in animals have demonstrated that a dysbiotic environment is associated with low production of vitamin K by the gut microbiota. Vitamin K plays a vital role in blood coagulation as well as in the cardiovascular and bone systems. It serves as a cofactor for γ-glutamyl carboxylases and thus is essential for the post-translational modification and activation of vitamin K-dependent calcification regulators, such as osteocalcin, matrix Gla protein, Gla-rich protein, and proteins C and S. Additionally, vitamin K executes essential antioxidant and anti-inflammatory functions. Dietary intake is the main source of vitamin K; however, it also can be produced by gut microbiota. This review discusses the effects of uremia on the imbalance in gut microbiota, vitamin K-producing bacteria, and vitamin K deficiency in CKD patients, leading to a better understanding and raising hypothesis for future clinical studies.


Assuntos
Insuficiência Renal Crônica , Uremia , Deficiência de Vitamina K , Animais , Humanos , Disbiose , Vitamina K/metabolismo , Insuficiência Renal Crônica/microbiologia , Uremia/metabolismo , Uremia/microbiologia , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/metabolismo
8.
PLoS Negl Trop Dis ; 16(9): e0010302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067216

RESUMO

BACKGROUND: Strongyloides stercoralis infection typically causes severe symptoms in immunocompromised patients. This infection can also alter the gut microbiota and is often found in areas where chronic kidney disease (CKD) is common. However, the relationship between S. stercoralis and the gut microbiome in chronic kidney disease (CKD) is not understood fully. Recent studies have shown that gut dysbiosis plays an important role in the progression of CKD. Hence, this study aims to investigate the association of S. stercoralis infection and gut microbiome in CKD patients. METHODOLOGY/PRINCIPAL FINDINGS: Among 838 volunteers from Khon Kaen Province, northeastern Thailand, 40 subjects with CKD were enrolled and divided into two groups (S. stercoralis-infected and -uninfected) matched for age, sex and biochemical parameters. Next-generation technology was used to amplify and sequence the V3-V4 region of the 16S rRNA gene to provide a profile of the gut microbiota. Results revealed that members of the S. stercoralis-infected group had lower gut microbial diversity than was seen in the uninfected group. Interestingly, there was significantly greater representation of some pathogenic bacteria in the S. stercoralis-infected CKD group, including Escherichia-Shigella (P = 0.013), Rothia (P = 0.013) and Aggregatibacter (P = 0.03). There was also a trend towards increased Actinomyces, Streptococcus and Haemophilus (P > 0.05) in this group. On the other hand, the S. stercoralis-infected CKD group had significantly lower representation of SCFA-producing bacteria such as Anaerostipes (P = 0.01), Coprococcus_1 (0.043) and a non-significant decrease of Akkermansia, Eubacterium rectale and Eubacterium hallii (P > 0.05) relative to the uninfected group. Interesting, the genera Escherichia-Shigella and Anaerostipes exhibited opposing trends, which were significantly related to sex, age, infection status and CKD stages. The genus Escherichia-Shigella was significantly more abundant in CKD patients over the age of 65 years and infected with S. stercoralis. A correlation analysis showed inverse moderate correlation between the abundance of the genus of Escherichia-Shigella and the level of estimated glomerular filtration rate (eGFR). CONCLUSIONS/SIGNIFICANCE: Conclusion, the results suggest that S. stercoralis infection induced gut dysbiosis in the CKD patients, which might be involved in CKD progression.


Assuntos
Insuficiência Renal Crônica , Strongyloides stercoralis , Estrongiloidíase , Idoso , Animais , Bactérias/genética , Disbiose/microbiologia , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/microbiologia , Strongyloides stercoralis/genética , Estrongiloidíase/complicações , Tailândia
9.
Microb Pathog ; 169: 105667, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35793779

RESUMO

The Pathology of digestive tract has long been known to be correlated with chronic kidney disease (CKD). The member of the major Firmicutes phylum especially Clostridium subcluster XIVa altered quantitatively and qualitatively in the gut microbiota of patients with End Stage Renal Disease (ESRD) and CKD. Therefore, in this study, the abundance of the species of Clostridium genus of Firmicutes phylum compared between intestine microbiota of patients with kidney failure and healthy individual. Fresh fecal specimens of 20 patients at different stages of CKD and 20 healthy individuals were collected. Bacterial DNA of samples were extracted to use for 16S ribosomal DNA sequencing targeting the V3-V4 region. Next generation sequencing (NGS) method at MiSeq system was used to find the diversity of gut microbiota composition. Totally, 11 (1.68%) of 651 bacterial strains which were isolated from forty fecal samples of both healthy volunteers and CKD/ESRD patients, were identified as Clostridium species. Eight genera of 11 Clostridium genera were related to Clostridium sensu stricto, and 3 other genera were as follows Vallitalea, Acidaminobacter and Caloramator. Among both group, the highest abundance was dedicated to Clostridium celatum genera. Sarcina maxima were not identified. The composition of Clostridium spp. showed the same frequency among CKD/ESRD and healthy groups (p < 0.05). The abundance of Clostridium spp. is virtually the same and not differs among healthy individuals and CKD/ESRD patients. Results of the present indicate despite of critical role of gut microbiota, some pathogens and their metabolites have no role on hemostasis and pathogenesis of kidney disorders.


Assuntos
Microbioma Gastrointestinal , Falência Renal Crônica , Insuficiência Renal Crônica , Clostridium/genética , Fezes/microbiologia , Firmicutes , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/microbiologia
10.
Front Cell Infect Microbiol ; 12: 726256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558102

RESUMO

Rationale and Objective: Gut microbiota have been targeted by alternative therapies for non-communicable diseases. We examined the gut microbiota of a healthy Taiwanese population, identified various bacterial drivers in different demographics, and compared them with dialysis patients to associate kidney disease progression with changes in gut microbiota. Study Design: This was a cross-sectional cohort study. Settings and Participants: Fecal samples were obtained from 119 healthy Taiwanese volunteers, and 16S rRNA sequencing was done on the V3-V4 regions to identify the bacterial enterotypes. Twenty-six samples from the above cohort were compared with fecal samples from 22 peritoneal dialysis and 16 hemodialysis patients to identify species-level bacterial biomarkers in the dysbiotic gut of chronic kidney disease (CKD) patients. Results: Specific bacterial species were identified pertaining to different demographics such as gender, age, BMI, physical activity, and sleeping habits. Dialysis patients had a significant difference in gut microbiome composition compared to healthy controls. The most abundant genus identified in CKD patients was Bacteroides, and at the species level hemodialysis patients showed significant abundance in B. ovatus, B. caccae, B. uniformis, and peritoneal dialysis patients showed higher abundance in Blautia producta (p ≤ 0.05) than the control group. Pathways pertaining to the production of uremic toxins were enriched in CKD patients. The abundance of the bacterial species depended on the type of dialysis treatment. Conclusion: This study characterizes the healthy gut microbiome of a Taiwanese population in terms of various demographics. In a case-control examination, the results showed the alteration in gut microbiota in CKD patients corresponding to different dialysis treatments. Also, this study identified the bacterial species abundant in CKD patients and their possible role in complicating the patients' condition.


Assuntos
Microbioma Gastrointestinal , Microbiota , Insuficiência Renal Crônica , Toxinas Biológicas , Bactérias/genética , Bactérias/metabolismo , Bacteroides/genética , Estudos Transversais , Disbiose/microbiologia , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/terapia , Taiwan , Toxinas Urêmicas
11.
Nutrients ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458199

RESUMO

The probiotics-supplemented low-protein diet in chronic kidney disease (ProLowCKD) was a single-centre, double-blind, placebo-controlled, randomised trial that was conducted to investigate whether the association between a low protein diet (LPD) and a new formulation of probiotics (Bifidobacterium longum and Lactobacillus reuteri) was effective at reducing traditional uremic, microbiota-derived, and proatherogenic toxins in sixty patients affected by advanced CKD. After 2 months of a LPD-a reduction in blood urea nitrogen (52 ± 17 vs. 46 ± 15 mg/dL, p = 0.003), total cholesterol (185 ± 41 vs. 171 ± 34 mg/dL, p = 0.001), and triglycerides (194 ± 148 vs. 161 ± 70 mg/dL, p = 0.03) was observed; 57 subjects were then randomized to receive probiotics or a placebo for the subsequent 3 months. A total of 27 patients in the placebo group showed increased serum values of total cholesterol (169 ± 36 vs. 185 ± 40 mg/dL, p = 0.01), LDL cholesterol (169 ± 36 vs. 185 ± 40 mg/dL, p = 0.02), lipoprotein-associated phospholipase A2 (155.4 ± 39.3 vs. 167.5 ± 51.4 nmol/mL/min, p = 0.006), and indoxyl-sulphate (30.1 ± 17.6 vs. 34.5 ± 20.2 µM, p = 0.026), while the 24 subjects in the probiotics group showed a trend in the reduction of microbiota toxins. A reduction of antihypertensive and diuretic medications was possible in the probiotics group. This study shows that associating probiotics to LPD may have an additional beneficial effect on the control and modulation of microbiota-derived and proatherogenic toxins in CKD patients.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Insuficiência Renal Crônica , Toxinas Biológicas , LDL-Colesterol , Dieta com Restrição de Proteínas , Método Duplo-Cego , Feminino , Humanos , Masculino , Probióticos/uso terapêutico , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/terapia , Toxinas Biológicas/farmacologia
12.
Sci Rep ; 11(1): 23530, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876615

RESUMO

Chronic kidney disease is a major public health concern that affects millions of people globally. Alterations in gut microbiota composition have been observed in patients with chronic kidney disease. Nevertheless, the correlation between the gut microbiota and disease severity has not been investigated. In this study, we performed shot-gun metagenomics sequencing and identified several taxonomic and functional signatures associated with disease severity in patients with chronic kidney disease. We noted that 19 microbial genera were significantly associated with the severity of chronic kidney disease. The butyrate-producing bacteria were reduced in patients with advanced stages of chronic kidney diseases. In addition, functional metagenomics showed that two-component systems, metabolic activity and regulation of co-factor were significantly associated with the disease severity. Our study provides valuable information for the development of microbiota-oriented therapeutic strategies for chronic kidney disease.


Assuntos
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiologia , Insuficiência Renal Crônica/microbiologia , Adolescente , Bactérias/genética , Bactérias/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Metagenômica/métodos , Índice de Gravidade de Doença
13.
Toxins (Basel) ; 13(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34822593

RESUMO

Chronic kidney disease (CKD) is characterized by gut dysbiosis with a decrease in short-chain fatty acid (SCFA)-producing bacteria. Levels of protein-bound uremic toxins (PBUTs) and post-translational modifications (PTMs) of albumin increase with CKD, both risk factors for cardiovascular morbidity and mortality. The relationship between fecal metabolites and plasma concentrations of PBUTs in different stages of CKD (n = 103) was explored. Estimated GFR tends to correlate with fecal butyric acid (BA) concentrations (rs = 0.212; p = 0.032), which, in its turn, correlates with the abundance of SCFA-producing bacteria. Specific SCFAs correlate with concentrations of PBUT precursors in feces. Fecal levels of p-cresol correlate with its derived plasma UTs (p-cresyl sulfate: rs = 0.342, p < 0.001; p-cresyl glucuronide: rs = 0.268, p = 0.006), whereas an association was found between fecal and plasma levels of indole acetic acid (rs = 0.306; p = 0.002). Finally, the albumin symmetry factor correlates positively with eGFR (rs = 0.274; p = 0.005). The decreased abundance of SCFA-producing gut bacteria in parallel with the fecal concentration of BA and indole could compromise the intestinal barrier function in CKD. It is currently not known if this contributes to increased plasma levels of PBUTs, potentially playing a role in the PTMs of albumin. Further evaluation of SCFA-producing bacteria and SCFAs as potential targets to restore both gut dysbiosis and uremia is needed.


Assuntos
Disbiose/etiologia , Microbioma Gastrointestinal , Insuficiência Renal Crônica/fisiopatologia , Toxinas Urêmicas/metabolismo , Ácido Butírico/metabolismo , Estudos de Coortes , Fezes/microbiologia , Humanos , Ácidos Indolacéticos/metabolismo , Insuficiência Renal Crônica/microbiologia
14.
Int J Med Sci ; 18(16): 3839-3850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790060

RESUMO

Background: Although associations between low protein diet (LPD) and changes of gut microbiota have been reported; however, systematic discernment of the effects of LPD on diet-microbiome-host interaction in patients with chronic kidney disease (CKD) is lacking. Methods: We searched PUBMED and EMBASE for articles published on changes of gut microbiota associated with implementation of LPD in CKD patients until July 2021. Independent researchers extracted data and assessed risks of bias. We conducted meta-analyses of combine p-value, mean differences and random effects for gut microbiota and related metabolites. Study heterogeneity was measured by Tau2 and I2 statistic. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Five articles met inclusion criteria. The meta-analyses of gut microbiota exhibited enrichments of Lactobacillaceae (meta-p= 0.010), Bacteroidaceae (meta-p= 0.048) and Streptococcus anginosus (meta-p< 0.001), but revealed depletion of Bacteroides eggerthii (p=0.017) and Roseburia faecis (meta-p=0.019) in LPD patients compared to patients undergoing normal protein diet. The serum IS levels (mean difference: 0.68 ug/mL, 95% CI: -8.38-9.68, p= 0.89) and pCS levels (mean difference: -3.85 ug/mL, 95% CI: -15.49-7.78, p < 0.52) did not change between groups. We did not find significant differences on renal function associated with change of microbiota between groups (eGFR, mean difference: -7.21 mL/min/1.73 m2, 95% CI: -33.2-18.79, p= 0.59; blood urea nitrogen, mean difference: -6.8 mg/dL, 95% CI: -46.42-32.82, p= 0.74). Other clinical (sodium, potassium, phosphate, albumin, fasting sugar, uric acid, total cholesterol, triglycerides, C-reactive protein and hemoglobin) and anthropometric estimates (body mass index, systolic blood pressure and diastolic blood pressure) did not differ between the two groups. Conclusions: This systematic review and meta-analysis suggested that the effects of LPD on the microbiota were observed predominantly at the families and species levels but minimal on microbial diversity or richness. In the absence of global compositional microbiota shifts, the species-level changes appear insufficient to alter metabolic or clinical outputs.


Assuntos
Dieta com Restrição de Proteínas , Microbioma Gastrointestinal/fisiologia , Insuficiência Renal Crônica/microbiologia , Disbiose/epidemiologia , Disbiose/etiologia , Humanos , Internacionalidade , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/epidemiologia
15.
Nutrients ; 13(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684638

RESUMO

Chronic kidney disease (CKD) is generally progressive and irreversible, structural or functional renal impairment for 3 or more months affecting multiple metabolic pathways. Recently, the composition, dynamics, and stability of a patient's microbiota has been noted to play a significant role during disease onset or progression. Increasing urea concentration during CKD can lead to an acceleration of the process of kidney injury leading to alterations in the intestinal microbiota that can increase the production of gut-derived toxins and alter the intestinal epithelial barrier. A detailed analysis of the relationship between the role of intestinal microbiota and the development of inflammation within the symbiotic and dysbiotic intestinal microbiota showed significant changes in kidney dysfunction. Several recent studies have determined that dietary factors can significantly influence the activation of immune cells and their mediators. Moreover, dietary changes can profoundly affect the balance of gut microbiota. The aim of this review is to present the importance and factors influencing the differentiation of the human microbiota in the progression of kidney diseases, such as CKD, IgA nephropathy, idiopatic nephropathy, and diabetic kidney disease, with particular emphasis on the role of the immune system. Moreover, the effects of nutrients, bioactive compounds on the immune system in development of chronic kidney disease were reviewed.


Assuntos
Microbioma Gastrointestinal/imunologia , Sistema Imunitário/microbiologia , Fenômenos Fisiológicos da Nutrição/imunologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/microbiologia , Humanos , Rim/imunologia , Rim/microbiologia
16.
Biomed Res Int ; 2021: 5466656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557546

RESUMO

Clostridioides difficile infection (CDI) is a health issue of utmost significance in Europe and North America, due to its high prevalence, morbidity, and mortality rate. The clinical spectrum of CDI is broad, ranging from asymptomatic to deadly fulminant colitis. When associated with chronic kidney disease (CKD), CDI is more prevalent and more severe than in the general population, due to specific risk factors such as impaired immune system, intestinal dysmotility, high antibiotic use leading to disturbed microbiota, frequent hospitalization, and PPI use. We performed a systematic review on the issue of prevention and treatment of CDI in the CKD population, analysing the suitable randomized controlled cohort studies published between 2000 and 2021. The results show that the most important aspect of prevention is isolation and disinfection with chlorine-based solution and hydrogen peroxide vapour to stop the spread of bacteria. In terms of prevention, using Lactobacillus plantarum (LP299v) proved to be more efficient than disinfection measures in transplant patients, leading to higher cure rates and less recurrent episodes of CDI. Treatment with oral fidaxomycin is more effective than with oral vancomycin for the initial episode of CDI in CKD patients. Faecal microbiota transplantation (FMT) is more effective than vancomycin in recurrent CDI in CKD patients. More large-sample RCTs are necessary to conclude on the best treatment and prevention strategy of CDI in CKD patients.


Assuntos
Infecções por Clostridium/complicações , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/microbiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/terapia , Humanos , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Toxins (Basel) ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357944

RESUMO

Sarcopenia is a prevalent condition in chronic kidney disease (CKD). We determined gut microbiota (gMB) composition in CKD patients with or without sarcopenia. Furthermore, we investigated whether in these patients, there was any association between gMB, uremic toxins, inflammation and oxidative stress. We analyzed gMB composition, uremic toxins (indoxyl sulphate and p-cresyl sulphate), inflammatory cytokines (interleukin 10, tumor necrosis factor α, interleukin 6, interleukin 17, interleukin 12 p70, monocyte chemoattractant protein-1 and fetuin-A) and oxidative stress (malondialdehyde) of 64 elderly CKD patients (10 < eGFR < 45 mL/min/1.73 m2, not on dialysis) categorized as sarcopenic and not-sarcopenic. Sarcopenia was defined according to European Working Group on Sarcopenia in Older People 2 criteria. Sarcopenic patients had a greater abundance of the Micrococcaceae and Verrucomicrobiaceae families and of Megasphaera, Rothia, Veillonella, Akkermansia and Coprobacillus genera. They had a lower abundance of the Gemellaceae and Veillonellaceae families and of Acidaminococcus and Gemella genera. GMB was associated with uremic toxins, inflammatory cytokines and MDA. However, uremic toxins, inflammatory cytokines and MDA were not different in sarcopenic compared with not-sarcopenic individuals, except for interleukin 10, which was higher in not-sarcopenic patients. In older CKD patients, gMB was different in sarcopenic than in not-sarcopenic ones. Several bacterial families and genera were associated with uremic toxins and inflammatory cytokines, although none of these latter substantially different in sarcopenic versus not-sarcopenic patients.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica/microbiologia , Sarcopenia/epidemiologia , Toxinas Urêmicas/metabolismo , Idoso , Bactérias , Humanos , Indicã , Inflamação , Interleucina-6 , Malondialdeído , Pessoa de Meia-Idade , Estresse Oxidativo , Diálise Renal , Sarcopenia/metabolismo , Uremia , Toxinas Urêmicas/análise
18.
Mol Nutr Food Res ; 65(19): e2100374, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390604

RESUMO

INTRODUCTION: Resistant starch type-2 (RS2) can mitigate inflammation and oxidative stress in hemodialysis (HD) patients. However, there is still a lack of knowledge on the impact of the RS2 on the gut microbiota community in these patients. Thus, this study aims to evaluate the effects of enriched RS2 cookies on the gut microbiome in HD patients. METHODS AND RESULTS: This comprises a randomized, double-blind, placebo-controlled trial of age-, sex-, and BMI-matched patients and controls. The RS2 group receives enriched RS2 cookies (16 g d-1 of Hi-Maize 260, Ingredion) for 4 weeks, while the placebo group received cookies made with manioc flour. Fecal microbiota composition is evaluated by the 16S ribosomal RNA gene. Analysis of the microbiota reveals that Pielou's evenness is significantly decreased after RS2 supplementation. Notably, it is observed that RS2 intervention upregulates significantly 8 Amplicon Sequencing Variants (ASV's), including Roseburia and Ruminococcus gauvreauii, which are short-chain fatty acids (SCFA) producers. Furthermore, it is associated with the downregulation of 11 ASVs, such as the pro-inflammatory Dialister. CONCLUSIONS: RS2 intervention for 4 weeks in HD patients effectively alters SCFA producers in the gut microbiota, suggesting that it could be a good nutritional strategy for patients with chronic kidney disease (CKD) on HD.


Assuntos
Microbioma Gastrointestinal , Diálise Renal , Insuficiência Renal Crônica/microbiologia , Amido Resistente , Adulto , Idoso , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Insuficiência Renal Crônica/terapia , Resultado do Tratamento
19.
J Immunol Res ; 2021: 5516035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095319

RESUMO

The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Imunomodulação , Insuficiência Renal Crônica/imunologia , Translocação Bacteriana/imunologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Rim/imunologia , Rim/patologia , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia
20.
Sci Rep ; 11(1): 12773, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140540

RESUMO

Chronic kidney disease (CKD) is a major public health burden around the world. The gut microbiome may contribute to CKD progression and serve as a promising therapeutic target. Colonic dialysis has long been used in China to help remove gut-derived toxins to delay CKD progression. Since disturbances in the gut biome may influence disease progression, we wondered whether colonic dialysis may mitigate the condition by influencing the biome. We compared the gut microbiota, based on 16S rRNA gene sequencing, in fecal samples of 25 patients with CKD (stages 3-5) who were receiving colonic dialysis(group CD), 25 outpatients with CKD not receiving colonic dialysis(group OP), and 34 healthy subjects(group HS). Richness of gut microbiota was similar between patients on colonic dialysis and healthy subjects, and richness in these two groups was significantly higher than that in patients not on colonic dialysis. Colonic dialysis also altered the profile of microbes in the gut of CKD patients, bringing it closer to the profile in healthy subjects. Colonic dialysis may protect renal function in pre-dialysis CKD by mitigating dysbiosis of gut microbiota.


Assuntos
Colo/microbiologia , Colo/fisiopatologia , Microbioma Gastrointestinal , Rim/fisiopatologia , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/fisiopatologia , Biodiversidade , Estudos de Casos e Controles , Diálise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...